Error reduction and convergence for an adaptive mixed finite element method
نویسندگان
چکیده
منابع مشابه
Error reduction and convergence for an adaptive mixed finite element method
An adaptive mixed finite element method (AMFEM) is designed to guarantee an error reduction, also known as saturation property: after each refinement step, the error for the fine mesh is strictly smaller than the error for the coarse mesh up to oscillation terms. This error reduction property is established here for the Raviart–Thomas finite element method with a reduction factor ρ < 1 uniforml...
متن کاملError Reduction, Convergence and Optimality for Adaptive Mixed Finite Element Methods for Diffusion Equations
Error reduction, convergence and optimality are analyzed for adaptive mixed finite element methods (AMFEM) for diffusion equations without marking the oscillation of data. Firstly, the quasi-error, i.e. the sum of the stress variable error and the scaled error estimator, is shown to reduce with a fixed factor between two successive adaptive loops, up to an oscillation. Secondly, the convergence...
متن کاملAn optimal adaptive mixed finite element method
Various applications in fluid dynamics and computational continuum mechanics motivate the development of reliable and efficient adaptive algorithms for mixed finite element methods. In order to save degrees of freedom, not all but just a selection of finite element domains are refined. Hence the fundamental question of convergence as well as the question of optimality require new mathematical a...
متن کاملQuasi-Optimal Convergence Rate for an Adaptive Finite Element Method
We analyze the simplest and most standard adaptive finite element method (AFEM), with any polynomial degree, for general second order linear, symmetric elliptic operators. As is customary in practice, the AFEM marks exclusively according to the error estimator and performs a minimal element refinement without the interior node property. We prove that the AFEM is a contraction, for the sum of th...
متن کاملAn adaptive mixed finite element method for wind field adjustment
In this paper we present an adaptive strategy to obtain an incompressible wind field that adjusts to an experimental one, and verify boundary conditions of physical interest. We use an Augmented Lagrangian formulation for solving this problem. Our method is based on an Uzawa iteration to update the Lagrange multiplier and on an elliptic adaptive inner iteration for velocity. Several examples sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2006
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-06-01829-1